Package: airt 0.2.3

Sevvandi Kandanaarachchi

airt: Evaluation of Algorithm Collections Using Item Response Theory

An evaluation framework for algorithm portfolios using Item Response Theory (IRT). We use continuous and polytomous IRT models to evaluate algorithms and introduce algorithm characteristics such as stability, effectiveness and anomalousness (Kandanaarachchi, Smith-Miles 2020) <doi:10.13140/RG.2.2.11363.09760>.

Authors:Sevvandi Kandanaarachchi [aut, cre]

airt_0.2.3.tar.gz
airt_0.2.3.zip(r-4.5)airt_0.2.3.zip(r-4.4)airt_0.2.3.zip(r-4.3)
airt_0.2.3.tgz(r-4.5-any)airt_0.2.3.tgz(r-4.4-any)airt_0.2.3.tgz(r-4.3-any)
airt_0.2.3.tar.gz(r-4.5-noble)airt_0.2.3.tar.gz(r-4.4-noble)
airt_0.2.3.tgz(r-4.4-emscripten)airt_0.2.3.tgz(r-4.3-emscripten)
airt.pdf |airt.html
airt/json (API)

# Install 'airt' in R:
install.packages('airt', repos = c('https://sevvandi.r-universe.dev', 'https://cloud.r-project.org'))

Bug tracker:https://github.com/sevvandi/airt/issues

Pkgdown site:https://sevvandi.github.io

Datasets:
  • classification_cts - A dataset containing classification algorithm performance data in a continuous format.
  • classification_poly - A dataset containing classification algorithm performance data in a polytomous format.

On CRAN:

Conda:

4.18 score 1 packages 8 scripts 399 downloads 15 exports 112 dependencies

Last updated 1 years agofrom:ff32b1c20b. Checks:9 OK. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKMar 17 2025
R-4.5-winOKMar 17 2025
R-4.5-macOKMar 17 2025
R-4.5-linuxOKMar 17 2025
R-4.4-winOKMar 17 2025
R-4.4-macOKMar 17 2025
R-4.4-linuxOKMar 17 2025
R-4.3-winOKMar 17 2025
R-4.3-macOKMar 17 2025

Exports:algo_effectiveness_crmalgo_effectiveness_polyautoplotcirtmodeleffectiveness_crmeffectiveness_polyheatmaps_crmlatent_trait_analysismake_polyIRT_datamodel_goodness_crmmodel_goodness_for_algo_crmmodel_goodness_for_algo_polymodel_goodness_polypirtmodeltracelines_poly

Dependencies:audiobackportsbase64encbeeprbriobslibcachemcallrcheckmatecliclustercodetoolscolorspacecpp11crayoncurldata.tabledcurverDerivdescdiffobjdigestdplyrEstCRMevaluatefansifarverfastmapfontawesomeforeignFormulafsfuturefuture.applygenericsggplot2globalsglueGPArotationgridExtragtablehighrHmischtmlTablehtmltoolshtmlwidgetsisobandjquerylibjsonliteknitrlabelinglatticelifecyclelistenvmagrittrMASSMatrixmemoisemgcvmimemirtmunsellnlmennetparallellypbapplypermutepillarpkgbuildpkgconfigpkgloadpracmapraiseprocessxprogressrpspurrrR.methodsS3R.ooR.utilsR6rappdirsRColorBrewerRcppRcppArmadillorlangrmarkdownrpartrprojrootRPushbulletrstudioapisassscalessessioninfoSimDesignsnowstringistringrtestthattibbletidyrtidyselecttinytexutf8vctrsveganviridisviridisLitewaldowithrxfunyaml

Introduction to airt

Rendered fromairt.Rmdusingknitr::rmarkdownon Mar 17 2025.

Last update: 2024-03-21
Started: 2020-03-22