Package 'airt'

Title: Evaluation of Algorithm Collections Using Item Response Theory
Description: An evaluation framework for algorithm portfolios using Item Response Theory (IRT). We use continuous and polytomous IRT models to evaluate algorithms and introduce algorithm characteristics such as stability, effectiveness and anomalousness (Kandanaarachchi, Smith-Miles 2020) <doi:10.13140/RG.2.2.11363.09760>.
Authors: Sevvandi Kandanaarachchi [aut, cre]
Maintainer: Sevvandi Kandanaarachchi <[email protected]>
License: GPL-3
Version: 0.2.3
Built: 2025-01-16 02:37:54 UTC
Source: https://github.com/sevvandi/airt

Help Index


Computes the actual and predicted effectiveness of a given algorithm.

Description

This function computes the actual and predicted effectiveness of a given algorithm for different tolerance values.

Usage

algo_effectiveness_crm(mod, num = 1)

Arguments

mod

A fitted mirt model using the function irtmodel or R package mirt.

num

The algorithm number, for which the goodness of the IRT model is computed.

Value

A list with the following components:

effective

The x,y coodinates for the actual and predicted effectiveness curves for algorithm num.

predictedEff

The area under the predicted effectiveness curve.

actualEff

The area under the actual effectiveness curve.

Examples

set.seed(1)
x1 <- runif(100)
x2 <- runif(100)
x3 <- runif(100)
X <- cbind.data.frame(x1, x2, x3)
max_item <- rep(1,3)
min_item <- rep(0,3)
mod <- cirtmodel(X, max.item=max_item, min.item=min_item)
out <- algo_effectiveness_crm(mod$model, num=1)
out

Computes the actual and predicted effectiveness of a given algorithm.

Description

This function computes the actual and predicted effectiveness of a given algorithm for different tolerance values.

Usage

algo_effectiveness_poly(mod, num = 1)

Arguments

mod

A fitted mirt model using the function irtmodel or R package mirt.

num

The algorithm number

Value

A list with the following components:

effective

The x,y coodinates for the actual and predicted effectiveness curves for algorithm num.

predictedEff

The area under the predicted effectiveness curve.

actualEff

The area under the actual effectiveness curve.

#'@examples set.seed(1) x1 <- sample(1:5, 100, replace = TRUE) x2 <- sample(1:5, 100, replace = TRUE) x3 <- sample(1:5, 100, replace = TRUE) X <- cbind.data.frame(x1, x2, x3) mod <- pirtmodel(X) out <- algo_effectiveness_poly(mod$model, num=1) out


Fits a continuous IRT model.

Description

This function fits a continuous Item Response Theory (IRT) model to the algorithm performance data. The function EstCRMitem in the R package EstCRM is updated to accommodate negative discrimination.

Usage

cirtmodel(df, scale = FALSE, scale.method = NULL, max.item = 1, min.item = 0)

Arguments

df

The performance data in a matrix or dataframe with good performances having high values and poor performances having low values.

scale

If TRUE, the performance data is scaled to 0-1. The default is FALSE.

scale.method

The method to scale the data. The default is NULL. If set to "single", it scales the data to 0-1 for the full dataset. If set to "multiple" it scales each column/algorithm separately to 0-1. If scale is FALSE, the data is not scaled.

max.item

A vector with the maximum performance value for each algorithm. This can be used to inform the maximum performance value for each algorithm. Only will be used if scale is FALSE. Default is 1.

min.item

A vector with the minimum performance value for each algorithm. This can be used to inform the minimum performance value for each algorithm. Only will be used if scale is FALSE. Default is 0.

Value

A list with the following components:

model

The IRT model.

anomalous

A binary value for each algorithm. It is set to 1 if an algorithm is anomalous. Otherwise it is set to 0.

consistency

The consistency of each algorithm.

difficulty_limit

The difficulty limit of each algorithm. A higher difficulty limit indicates that the algorithm can tackle harder problems.

References

Zopluoglu C (2022). EstCRM: Calibrating Parameters for the Samejima's Continuous IRT Model. R package version 1.6, https://CRAN.R-project.org/package=EstCRM.

Examples

set.seed(1)
x1 <- runif(100)
x2 <- runif(100)
x3 <- runif(100)
X <- cbind.data.frame(x1, x2, x3)
mod <- cirtmodel(X)

A dataset containing classification algorithm performance data in a continuous format.

Description

This dataset contains the performance of 10 classification algorithms on 235 datasets discussed in the paper Instance Spaces for Machine Learning Classification by M. A. Munoz, L. Villanova, D. Baatar, and K. A. Smith-Miles .

Usage

classification_cts

Format

A dataframe of 235 x 10 dimensions.

Dimension 1

Each row contains the algorithm performance of a dataset on 10 classification algorithms.

Dimensions 2

Each column contains the algorithm performance of a single algorithm.

Source

https://katesmithmiles.wixsite.com/home/matilda


A dataset containing classification algorithm performance data in a polytomous format.

Description

This dataset contains the performance of 10 classification algorithms on 235 datasets discussed in the paper Instance Spaces for Machine Learning Classification by M. A. Munoz, L. Villanova, D. Baatar, and K. A. Smith-Miles .

Usage

classification_poly

Format

A dataframe of 235 x 10 dimensions.

Dimension 1

Each row contains the algorithm performance of a dataset on 10 classification algorithms.

Dimensions 2

Each column contains the algorithm performance of a single algorithm.

Source

https://katesmithmiles.wixsite.com/home/matilda


Computes the actual and predicted effectiveness of the collection of algorithms.

Description

This function computes the actual and predicted effectiveness of the collection of algorithms for different tolerance values.

Usage

effectiveness_crm(model)

## S3 method for class 'effectivenesscrm'
autoplot(object, plottype = 1, ...)

Arguments

model

The output of the function cirtmodel.

object

For autoplot: The output of the function effectiveness_crm

plottype

For autoplot: If plottype = 1, then actual effectiveness is plotted, if plottype = 2, then predicted effectiveness is plotted. If plottype = 3, area under the actual effectiveness curve (AUAEC) is plotted against area under the predicted effectiveness curve (AUPEC).

...

Other arguments currently ignored.

Value

A list with the following components:

effectivenessAUC

The area under the actual and predicted effectiveness curves.

actcurves

The x,y coodinates for the actual effectiveness curves for each algorithm.

#'

prdcurves

The x,y coodinates for the predicted effectiveness curves for each algorithm.

Examples

set.seed(1)
x1 <- runif(200)
x2 <- 2*x1 + rnorm(200, mean=0, sd=0.1)
x3 <- 1 - x1 + rnorm(200, mean=0, sd=0.1)
X <- cbind.data.frame(x1, x2, x3)
mod <- cirtmodel(X, scale = TRUE, scale.method = "multiple")
out <- effectiveness_crm(mod)
out
# For the actual effectiveness plot
autoplot(out, plottype = 1)
# For the predicted effectivness plot
autoplot(out, plottype = 2)
# For actual and predicted effectiveness plot
autoplot(out, plottype = 3)

Computes the actual and predicted effectiveness of the collection of algorithms.

Description

This function computes the actual and predicted effectiveness of the collection of algorithms for different tolerance values.

Usage

effectiveness_poly(model)

## S3 method for class 'effectivenesspoly'
autoplot(object, plottype = 1, ...)

Arguments

model

The output of pirtmodel function.

object

For autoplot: The output of the function effectiveness_crm

plottype

For autoplot: If plottype = 1, then actual effectiveness is plotted, if plottype = 2, then predicted effectiveness is plotted. If plottype = 3, area under the actual effectiveness curve (AUAEC) is plotted against area under the predicted effectiveness curve (AUPEC).

...

Other arguments currently ignored.

Value

A list with the following components:

effectivenessAUC

The area under the actual and predicted effectiveness curves.

actcurves

The x,y coodinates for the actual effectiveness curves for each algorithm.

#'

prdcurves

The x,y coodinates for the predicted effectiveness curves for each algorithm.

Examples

set.seed(1)
x1 <- sample(1:5, 100, replace = TRUE)
x2 <- sample(1:5, 100, replace = TRUE)
x3 <- sample(1:5, 100, replace = TRUE)
X <- cbind.data.frame(x1, x2, x3)
mod <- pirtmodel(X)
out <- effectiveness_poly(mod)
out
# For actual effectiveness curves
autoplot(out, plottype = 1)
# For predicted effectiveness curves
autoplot(out, plottype = 2)
# For Actual and Predicted Effectiveness (AUAEC, AUPEC)
autoplot(out, plottype = 3)

Function to produce heatmaps from a continuous IRTmodel

Description

This function makes a dataframe from the continuous IRTmodel the autoplot function produces the heatmaps.

Usage

heatmaps_crm(model, thetarange = c(-6, 6))

## S3 method for class 'heatmapcrm'
autoplot(
  object,
  xlab = "Theta",
  nrow = 2,
  ratio = 1,
  col_scheme = "plasma",
  ...
)

Arguments

model

Output from the function cirtmodel.

thetarange

The range for theta, default from -6 to 6.

object

For autoplot: output of heatmaps_crm function.

xlab

For autoplot: xlabel.

nrow

For autoplot: number of rows of heatmaps to plot.

ratio

For autoplot: ratio for coord_fixed in ggplot.

col_scheme

For autoplot: the color scheme for heatmaps. Default value is plasma.

...

Other arguments currently ignored.

Value

Dataframe with output probabilities from the IRT model for all algorithms, an object of class heatmapcrm.

Examples

data(classification_cts)
model <- cirtmodel(classification_cts)
obj <- heatmaps_crm(model)
head(obj$df)
autoplot(obj)

Performs the latent trait analysis

Description

This function performs the latent trait analysis of the datasets/problems after fitting a continuous IRT model. It fits a smoothing spline to the points to compute the latent trait. The autoplot function plots the latent trait and the performance.

Usage

latent_trait_analysis(
  df,
  scale = FALSE,
  scale.method = NULL,
  max.item = 1,
  min.item = 0,
  paras,
  epsilon = 0.01
)

## S3 method for class 'latenttrait'
autoplot(
  object,
  xlab = "Problem Difficulty",
  ylab = "Performance",
  plottype = 1,
  nrow = 2,
  se = TRUE,
  ratio = 3,
  ...
)

Arguments

df

The performance data in a matrix or dataframe with good performances having high values and poor performances having low values.

scale

If TRUE, the performance data is scaled to 0-1. The default is FALSE.

scale.method

The method to scale the data. The default is NULL. If set to "single", it scales the data to 0-1 for the full dataset. If set to "multiple" it scales each column/algorithm separately to 0-1. If scale is FALSE, the data is not scaled.

max.item

A vector with the maximum performance value for each algorithm. This can be used to inform the maximum performance value for each algorithm. Only will be used if scale is FALSE. Default is 1.

min.item

A vector with the minimum performance value for each algorithm. This can be used to inform the minimum performance value for each algorithm. Only will be used if scale is FALSE. Default is 0.

paras

The parameters from fitting cirtmodel.

epsilon

A value defining good algorithm performance. If epsilon = 0, then only the best algorithm is considered. A default

object

For autoplot: the output of the function latent_trait_analysis.

xlab

For autoplot: the xlabel.

ylab

For autoplot: the ylabel.

plottype

For autoplot: plottype = 1 for all algorithm performances in a single plot, plottype = 2 for using facet_wrap to plot individual algorithms, plottype = 3 to plot the smoothing splines and plottype = 4 to plot strengths and weaknesses.

nrow

For autoplot: If plottype = 2, the number of rows for facet_wrap.

se

For autoplot: for plotting splines with standard errors.

ratio

For autoplot: for plotting strengths and weaknesses, ratio between x and y axis.

...

Other arguments currently ignored.

Value

A list with the following components:

crmtheta

The problem trait output computed from the R package EstCRM.

strengths

The strengths of each algorithm and positions on the latent trait that they performs well.

longdf

The dataset in long format of latent trait occupancy.

plt

The ggplot object showing the fitted smoothing splines.

widedf

The dataset in wide format with latent trait.

thetas

The easiness of the problem set instances.

weakness

The weaknesses of each algorithm and positions on the latent trait that they performs poorly.

Examples

# This is a dummy example.
set.seed(1)
x1 <- runif(200)
x2 <- 2*x1 + rnorm(200, mean=0, sd=0.1)
x3 <- 1 - x1 + rnorm(200, mean=0, sd=0.1)
X <- cbind.data.frame(x1, x2, x3)
max_item <- rep(max(x1, x2, x3),3)
min_item <- rep(min(x1, x2, x3),3)
mod <- cirtmodel(X, max.item=max_item, min.item=min_item)
out <- latent_trait_analysis(X, min.item= min_item, max.item = max_item, paras = mod$model$param)
out
# To plot performance against the problem difficulty
autoplot(out)
# To plot individual panels
autoplot(out, plottype = 2)
# To plot smoothing splines
autoplot(out, plottype = 3)
# To plot strengths and weaknesses
autoplot(out, plottype = 4)

Converts continuous performance data to polytomous data with 5 categories.

Description

This function converts continous performance data to polytomous data with 5 categories

Usage

make_polyIRT_data(df, method = 1)

Arguments

df

The input data in a dataframe or a matrix

method

If 1, then the data is an accuracy measure between 0 and 1. If 2, then the performance data is possibly has a bigger range. So we divide it into 5 equal bins to make it polytomous.

Value

The polytomous data frame.

Examples

set.seed(1)
x1 <- runif(500)
x2 <- runif(500)
x3 <- runif(500)
x <- cbind(x1, x2, x3)
xout <- make_polyIRT_data(x)

Computes the goodness of IRT model for all algorithms.

Description

This function computes the goodness of the IRT model for all algorithms for different goodness tolerances.

Usage

model_goodness_crm(model)

## S3 method for class 'modelgoodnesscrm'
autoplot(object, ...)

Arguments

model

The output of function cirtmodel.

object

For autoplot: The output of model_goodness_crm.

...

Other arguments currently ignored.

Value

A list with the following components:

goodnessAUC

The area under the model goodness curve for each algorithm.

curves

The x,y coordinates for the model goodness curves for each algorithm.

residuals

The residuals for each algorithm using the AIRT model.

Examples

set.seed(1)
x1 <- runif(200)
x2 <- 2*x1 + rnorm(200, mean=0, sd=0.1)
x3 <- 1 - x1 + rnorm(200, mean=0, sd=0.1)
X <- cbind.data.frame(x1, x2, x3)
mod <- cirtmodel(X, scale = TRUE, scale.method = "multiple")
out <- model_goodness_crm(mod)
out
autoplot(out)

Computes the goodness of IRT model for a given algorithm.

Description

This function computes the goodness of the IRT model for a given algorithm for different goodness tolerances.

Usage

model_goodness_for_algo_crm(mod, num = 1)

Arguments

mod

A fitted mirt model using the function irtmodel or R package mirt.

num

The algorithm number, for which the goodness of the IRT model is computed.

Value

A list with the following components:

xy

The x values denote the goodness tolerances. The y values denote the model goodness.

auc

The area under the model goodness curve.

residuals

The different between actual and fitted performance values.

Examples

set.seed(1)
x1 <- runif(100)
x2 <- runif(100)
x3 <- runif(100)
X <- cbind.data.frame(x1, x2, x3)
max_item <- rep(1,3)
min_item <- rep(0,3)
mod <- cirtmodel(X, max.item=max_item, min.item=min_item)
out <- model_goodness_for_algo_crm(mod$model, num=1)
out

Computes the goodness of the IRT model fit for a given algorithm.

Description

This function computes the goodness of the IRT model fit for a given algorithm using the empirical cumulative distribution function of errors.

Usage

model_goodness_for_algo_poly(mod, num = 1)

Arguments

mod

A fitted mirt model using the function irtmodel or R package mirt.

num

The algorithm number

Value

A list with the following components:

xy

The x values denote the error tolerances. The y values denotes its empirical cumulative distribution function.

auc

The area under the CDF.

mse

The mean squared error.

Examples

set.seed(1)
x1 <- sample(1:5, 100, replace = TRUE)
x2 <- sample(1:5, 100, replace = TRUE)
x3 <- sample(1:5, 100, replace = TRUE)
X <- cbind.data.frame(x1, x2, x3)
mod <- pirtmodel(X)
out <- model_goodness_for_algo_poly(mod$model, num=1)
out

Computes the goodness of IRT model for all algorithms.

Description

This function computes the goodness of the IRT model for all algorithms using the empirical cumulative distribution function of errors.

Usage

model_goodness_poly(model)

## S3 method for class 'modelgoodnesspoly'
autoplot(object, ...)

Arguments

model

The output from pirtmodel function.

object

For autoplot: The output of the model_goodness_poly function.

...

Other arguments currently ignored.

Value

A list with the following components:

goodnessAUC

The area under the model goodness curve for each algorithm.

mse

The mean squared error.

curves

The x,y coodinates for the model goodness curves for each algorithm.

Examples

set.seed(1)
x1 <- sample(1:5, 100, replace = TRUE)
x2 <- sample(1:5, 100, replace = TRUE)
x3 <- sample(1:5, 100, replace = TRUE)
X <- cbind.data.frame(x1, x2, x3)
mod <- pirtmodel(X)
out <- model_goodness_poly(mod)
out
autoplot(out)

Fits a polytomous IRT model.

Description

This function fits a polytomous Item Response Theory (IRT) model using the R package mirt to the algorithm performance data.

Usage

pirtmodel(dat, ncycle = NULL, vpara = TRUE)

Arguments

dat

The performance data in a matrix or dataframe.

ncycle

The number of cycles for mirt. The default is 500.

vpara

It TRUE the verbose parameter for the mirt would be set to true.

Value

A list with the following components:

model

The IRT model using the R package mirt.

anomalous

A binary value for each algorithm. It is set to 1 if an algorithm is anomalous. Otherwise it is set to 0.

consistency

The consistency of each algorithm.

difficulty_limit

The difficulty limits for each algorithm. A higher threshold indicates that the algorithm can tackle harder problems.

References

R. Philip Chalmers (2012). mirt: A Multidimensional Item Response Theory Package for the R Environment. Journal of Statistical Software, 48(6), 1-29. doi:10.18637/jss.v048.i06

Examples

set.seed(1)
x1 <- sample(1:5, 100, replace = TRUE)
x2 <- sample(1:5, 100, replace = TRUE)
x3 <- sample(1:5, 100, replace = TRUE)
X <- cbind.data.frame(x1, x2, x3)
mod <- pirtmodel(X)

Function to plot tracelines from a polytomous IRTmodel

Description

This function makes a dataframe from the polytomous IRTmodel. The autoplot function can be used to plot trace lines

Usage

tracelines_poly(model)

## S3 method for class 'tracelinespoly'
autoplot(
  object,
  xlab = "Theta",
  ylab = "Probability",
  nrow = 2,
  title = "Tracelines",
  ...
)

Arguments

model

Output from the function pirtmodel.

object

For autoplot: output of tracelines_poly function.

xlab

For autoplot: xlabel.

ylab

For autoplot: ylabel.

nrow

For autoplot: number of rows of heatmaps to plot.

title

For autoplot: the title for the plot.

...

Other arguments currently ignored.

Value

Dataframe with output probabilities from the IRT model for all algorithms, an object of the class tracelinespoly.

Examples

data(classification_poly)
mod <- pirtmodel(classification_poly)
obj <- tracelines_poly(mod)
head(obj$df)
autoplot(obj)