Package: oddnet 0.1.1.2

Sevvandi Kandanaarachchi

oddnet: Anomaly Detection in Temporal Networks

Anomaly detection in dynamic, temporal networks. The package 'oddnet' uses a feature-based method to identify anomalies. First, it computes many features for each network. Then it models the features using time series methods. Using time series residuals it detects anomalies. This way, the temporal dependencies are accounted for when identifying anomalies (Kandanaarachchi, Hyndman 2022) <arxiv:2210.07407>.

Authors:Sevvandi Kandanaarachchi [aut, cre], Rob Hyndman [aut]

oddnet_0.1.1.2.tar.gz
oddnet_0.1.1.2.zip(r-4.5)oddnet_0.1.1.2.zip(r-4.4)oddnet_0.1.1.2.zip(r-4.3)
oddnet_0.1.1.2.tgz(r-4.4-any)oddnet_0.1.1.2.tgz(r-4.3-any)
oddnet_0.1.1.2.tar.gz(r-4.5-noble)oddnet_0.1.1.2.tar.gz(r-4.4-noble)
oddnet_0.1.1.2.tgz(r-4.4-emscripten)oddnet_0.1.1.2.tgz(r-4.3-emscripten)
oddnet.pdf |oddnet.html
oddnet/json (API)

# Install 'oddnet' in R:
install.packages('oddnet', repos = c('https://sevvandi.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/sevvandi/oddnet/issues

On CRAN:

4.22 score 3 stars 11 scripts 135 downloads 3 exports 58 dependencies

Last updated 6 months agofrom:c66aafdebb. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 02 2024
R-4.5-winOKNov 02 2024
R-4.5-linuxOKNov 02 2024
R-4.4-winOKNov 02 2024
R-4.4-macOKNov 02 2024
R-4.3-winOKNov 02 2024
R-4.3-macOKNov 02 2024

Exports:anomalous_networkscompute_featureslad

Dependencies:anytimeBHclicolorspacecpp11digestdistributionaldplyrellipsisevdfablefabletoolsfansifarvergenericsggdistggplot2gluegtableigraphisobandlabelinglatticelifecyclelookoutlubridatemagrittrMASSMatrixmgcvmunsellmvtnormnlmenumDerivpcaPPpillarpkgconfigprogressrpurrrquadprogR6RANNRColorBrewerRcpprlangscalesstringistringrTDAstatstibbletidyrtidyselecttimechangetsibbleutf8vctrsviridisLitewithr

oddnet

Rendered fromoddnet.Rmdusingknitr::rmarkdownon Nov 02 2024.

Last update: 2022-12-19
Started: 2022-12-19