
Package: netseer (via r-universe)
September 18, 2024

Type Package

Title Graph Prediction from a Graph Time Series

Version 0.1.0.1

Maintainer Sevvandi Kandanaarachchi <sevvandik@gmail.com>

Description Predicting the structure of a graph including new nodes
and edges using a time series of graphs. Flux balance analysis,
a linear and integer programming technique used in biochemistry
is used with time series prediction methods to predict the
graph structure at a future time point Kandanaarachchi (2024)
<doi:10.48550/arXiv.2401.04280>.

License GPL (>= 3)

Encoding UTF-8

LazyData true

RoxygenNote 7.3.1

Imports dplyr, fable, fabletools, igraph, lpSolve, Matrix, rlang,
stats, tibble, tidyr, tsibble

Suggests feasts, urca

URL https://sevvandi.github.io/netseer/

Repository https://sevvandi.r-universe.dev

RemoteUrl https://github.com/sevvandi/netseer

RemoteRef HEAD

RemoteSha 79ad0d0c61fdf42c4e97aa4aae24a5d8394961d2

Contents
generate_graph_exp . 2
generate_graph_linear . 2
predict_graph . 3

Index 5

1

https://doi.org/10.48550/arXiv.2401.04280
https://sevvandi.github.io/netseer/

2 generate_graph_linear

generate_graph_exp Generates a bigger graph using exponential growth.

Description

Generates a bigger graph using parameters for node and edge growth. If a sequence of graphs are
created, the number of nodes in this sequence would exponentially increase.

Usage

generate_graph_exp(
gr = NULL,
del_edge = 0.1,
new_nodes = 0.1,
edge_increase = 0.1

)

Arguments

gr The input graph to generate the next graph. If set to NULL a graph using igraph::sample_pa
is used as the input graph.

del_edge The proportion of edges deleted from the input graph. Default set to 0.1.

new_nodes The proportion of nodes added to the input graph. Default set to 0.1.

edge_increase The proportion of edges added to the input graph. Default set to 0.1.

Value

A graph.

Examples

set.seed(1)
gr <- generate_graph_exp()
gr

generate_graph_linear Generates a bigger graph by linear growth.

Description

Generates a bigger graph using parameters for node and edge growth. If a sequence of graphs are
created, the number of nodes would linearly increase.

predict_graph 3

Usage

generate_graph_linear(
gr = NULL,
del_edge = 1,
new_nodes = 1,
edge_increase = 1

)

Arguments

gr The input graph to generate the next graph. If set to NULL a graph using igraph::sample_pa
is used as the input graph.

del_edge The number of edges deleted from the input graph. Default set to 1.

new_nodes The number of nodes added to the input graph. Default set to 1.

edge_increase The number of edges added to the input graph. Default set to 1.

Value

A graph.

Examples

set.seed(1)
gr <- generate_graph_linear()
gr

predict_graph Predicts a graph from a time series of graphs.

Description

This function predicts the graph at a future time step using a time series of graphs.

Usage

predict_graph(
graphlist,
formulation = 2,
conf_level1 = NULL,
conf_level2 = 90,
dense_opt = 2,
weights_opt = 6,
weights_param = 0.001,
h = 1

)

4 predict_graph

Arguments

graphlist A list of graphs in igraph format.
formulation Formulation 2 includes an additional condition constraining total edges by the

predicted value. Formulation 1 does not have that constraint. Formulation 2
gives more realistic graphs due to that constraint. Default is set to 2.

conf_level1 A value between 50 and 100 denoting the confidence interval for the number of
predicted nodes in the graph. If set to NULL the predicted graph has the mean
number of predicted nodes. If set to 80 for example, there would be 3 predicted
graphs. One with mean number of predicted nodes, and the other two with the
number of nodes corresponding to lower and upper confidence bounds.

conf_level2 The upper confidence bound for the degree distribution. Default set to 90.
dense_opt If set to 2 the dense option in R package lpSolve will be used.
weights_opt Weights option ranging from 1 to 6 used for different edge weight schemes.

Weights option 1 uses uniform weights for all edges. Option 2 uses binary
weights. If the edge existed in a past graph, then weight is set to 1. Else set
to 0. All possible new edges are assigned weight 1. Option 3 is a more selective
version. Option 4 uses proportional weights according to the history. Option 5
uses proportional weights, but as the network is more in the past, it gives less
weight. Option 5 uses linearly decaying proportional weights. Option 6 uses
harmonically decaying weights. That is the network at T is given weight 1, T-1
is given weight 1/2 and so on. Default is set to 6.

weights_param The weight given for possible edges from new vertices. Default set to 0.001.
h The prediction time step. Default is h = 1.

Value

A list of predicted graphs. If conf_level1 is not NULL, then 3 graphs are returned one with the
mean number of predicted nodes and the other 2 with the number of nodes equal to the lower and
upper bound values of prediction. If If conf_level1 is NULL, only the mean predicted graph is
returned.

Examples

library(igraph)
set.seed(2024)
edge_increase_val <- new_nodes_val <- del_edge_val <- 0.1
graphlist <- list()
graphlist[[1]] <- gr <- igraph::sample_pa(5, directed = FALSE)
for(i in 2:15){

gr <- generate_graph_exp(gr,
del_edge = del_edge_val,
new_nodes = new_nodes_val,
edge_increase = edge_increase_val)

graphlist[[i]] <- gr
}
grpred <- predict_graph(graphlist[1:15], conf_level2 = 90, weights_opt = 6)
grpred

Index

generate_graph_exp, 2
generate_graph_linear, 2

predict_graph, 3

5

	generate_graph_exp
	generate_graph_linear
	predict_graph
	Index

