Package: lookout 0.1.5

Sevvandi Kandanaarachchi

lookout: Leave One Out Kernel Density Estimates for Outlier Detection

Outlier detection using leave-one-out kernel density estimates and extreme value theory. The bandwidth for kernel density estimates is computed using persistent homology, a technique in topological data analysis. Using peak-over-threshold method, a generalized Pareto distribution is fitted to the log of leave-one-out kde values to identify outliers.

Authors:Sevvandi Kandanaarachchi [aut, cre], Rob Hyndman [aut], Chris Fraley [ctb]

lookout_0.1.5.tar.gz
lookout_0.1.5.zip(r-4.5)lookout_0.1.5.zip(r-4.4)lookout_0.1.5.zip(r-4.3)
lookout_0.1.5.tgz(r-4.4-any)lookout_0.1.5.tgz(r-4.3-any)
lookout_0.1.5.tar.gz(r-4.5-noble)lookout_0.1.5.tar.gz(r-4.4-noble)
lookout_0.1.5.tgz(r-4.4-emscripten)lookout_0.1.5.tgz(r-4.3-emscripten)
lookout.pdf |lookout.html
lookout/json (API)

# Install 'lookout' in R:
install.packages('lookout', repos = c('https://sevvandi.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/sevvandi/lookout/issues

Pkgdown site:https://sevvandi.github.io

On CRAN:

4.95 score 30 stars 2 packages 9 scripts 281 downloads 5 exports 40 dependencies

Last updated 9 months agofrom:d1e1c7becf. Checks:7 OK. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKJan 19 2025
R-4.5-winOKJan 19 2025
R-4.5-linuxOKJan 19 2025
R-4.4-winOKJan 19 2025
R-4.4-macOKJan 19 2025
R-4.3-winOKJan 19 2025
R-4.3-macOKJan 19 2025

Exports:autoplotfind_tda_bwlookoutlookout_tspersisting_outliers

Dependencies:clicolorspacecpp11dplyrevdfansifarvergenericsggplot2gluegtableisobandlabelinglatticelifecyclemagrittrMASSMatrixmgcvmunsellnlmepillarpkgconfigpurrrR6RANNRColorBrewerRcpprlangscalesstringistringrTDAstatstibbletidyrtidyselectutf8vctrsviridisLitewithr