Package: lookout 0.1.5
Sevvandi Kandanaarachchi
lookout: Leave One Out Kernel Density Estimates for Outlier Detection
Outlier detection using leave-one-out kernel density estimates and extreme value theory. The bandwidth for kernel density estimates is computed using persistent homology, a technique in topological data analysis. Using peak-over-threshold method, a generalized Pareto distribution is fitted to the log of leave-one-out kde values to identify outliers.
Authors:
lookout_0.1.5.tar.gz
lookout_0.1.5.zip(r-4.5)lookout_0.1.5.zip(r-4.4)lookout_0.1.5.zip(r-4.3)
lookout_0.1.5.tgz(r-4.4-any)lookout_0.1.5.tgz(r-4.3-any)
lookout_0.1.5.tar.gz(r-4.5-noble)lookout_0.1.5.tar.gz(r-4.4-noble)
lookout_0.1.5.tgz(r-4.4-emscripten)lookout_0.1.5.tgz(r-4.3-emscripten)
lookout.pdf |lookout.html✨
lookout/json (API)
# Install 'lookout' in R: |
install.packages('lookout', repos = c('https://sevvandi.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/sevvandi/lookout/issues
Last updated 7 months agofrom:d1e1c7becf. Checks:OK: 7. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 20 2024 |
R-4.5-win | OK | Nov 20 2024 |
R-4.5-linux | OK | Nov 20 2024 |
R-4.4-win | OK | Nov 20 2024 |
R-4.4-mac | OK | Nov 20 2024 |
R-4.3-win | OK | Nov 20 2024 |
R-4.3-mac | OK | Nov 20 2024 |
Exports:autoplotfind_tda_bwlookoutlookout_tspersisting_outliers
Dependencies:clicolorspacecpp11dplyrevdfansifarvergenericsggplot2gluegtableisobandlabelinglatticelifecyclemagrittrMASSMatrixmgcvmunsellnlmepillarpkgconfigpurrrR6RANNRColorBrewerRcpprlangscalesstringistringrTDAstatstibbletidyrtidyselectutf8vctrsviridisLitewithr
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Plots outliers identified by lookout algorithm. | autoplot.lookoutliers |
Plots outlier persistence for a range of significance levels. | autoplot.persistingoutliers |
Identifies bandwidth for outlier detection. | find_tda_bw |
Identifies outliers using the algorithm lookout. | lookout |
Identifies outliers in univariate time series using the algorithm lookout. | lookout_ts |
Computes outlier persistence for a range of significance values. | persisting_outliers |